

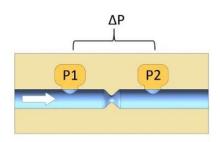
Quickstart guide

Conitnuous Flow Sensor

differential pressure flow sensor

Version 2.0

Thank you for choosing the Continuous Flow Sensor. The CFS is an easy to set up volume flow sensor for liquids, based on the differential pressure principle. The present sensor version is an OEM version, designed for integration into a system.


This document helps you getting started with the functionality of the sensor. For further documentation and safety information read the user manual.

Functionality

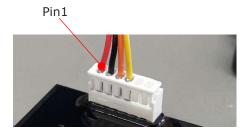
The volume flow is calculated from the pressure drop across a restriction in the fluid channel. The diameter of the restrictor depends on the flow range of the sensor.

Due to the restrictor, the sensor is not suited for fluids containing particles bigger as $50 \mu m$.

Using a filter is highly recommended.

Fluidical installation

Inlet and outlet can be connected by $\frac{1}{4}$ -28 UNF flat bottom connectors.


The CFS has a given flow direction, indicated by the arrow on the label. Backflow results in a negative flow signal.

Note that due to its small orifice the CFS should always be used with a prefilter 43 μ m (B1 / B2) mesh size.

Electrical installation

Connector/ Pin	Description/Function
1	VIN + (5 VDC)
2	VIN – (GND)
3	RS232 RX
4	RS232 TX
5	GND
6	DOUT
0	DOOT

RS-232 communication

Port settings:

- Baud: 115200, Data: 8, Stop: 1, Parity: None, Handshake: off
- All commands are transmitted in ASCII characters
- Each command is terminated with LF (Hex 0x0A)
- Commands and parameters are separated by a space (Hex 0x20)

For the first tests we recommend using a simple serial terminal program such as HTerm or Termite

HTerm: http://www.der-hammer.info

RS-232 interface

The CFS comes with an RS-232 interface. For an easy startup a RS-232 to USB cable can be provided by ReseaTech.

The communication chip uses the standard Windows VCP driver for virtual COM Ports.

If you encounter a problem with the standard driver, you can also find the latest version of the driver on the manufacturer's homepage:

http://www.ftdichip.com/Drivers/VCP.htm

RS-232 interface

Connect both communication lines (RX, TX) and the Ground connection to your RS-232 Interface. Make sure both lines are crossed.

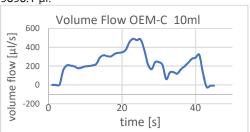
RX Sensor ----- TX Customer TX Sensor ----- RX Customer

The Communication lines are ±15kV ESD-protected.

Mating connector: Molex Micro-Latch, 51065-0600

Serial commands

Command	Description
M_Cont n	Continuous flow value
	output
	n = 1 -> start
	n = 0 -> stop
M_Single	Single flow measurement
M_Press	Single pressure
	measurement
M_Temp	Single temperature
	measurement
S_SetZero	Set the delta pressure to
	zero
S_GetZero	Returns the pressure zero
	point
S_ClearZero	Clears the zero point
S_GetFluidCal	Load current fluid
	calibration data


Application examples

Continuous measurement

To monitor a continuous flow, you can select a longer interval time for the measurement.

SetupCommand: S_SetInterval 1000

The following measurement shows a 10 ml syringe, which was squeezed by hand at varying flow rates. By integrating the flowrate over time, you get the total volume of $9898.1 \, \mu l$.

Limitations

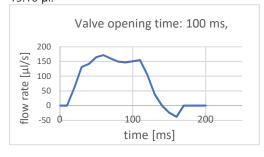
Property	Value	Unit
Maximum	1800	mbar
supply pressure	(absolute)	
Temperature	10 50	°C
range		
Viscosity range	1 100	mPas
Flow range	B0: 1-15	
	B1: 3-30	ml/min
	B2: 10-100	
Sampling rate	100	Hz
	(fixed)	
Readout interval	0.001-100	S
	(0.01 steps)	

Contact information

In case of difficulties with the CFS or if you have any questions, do not hesitate to contact us:

ReseaTech GmbH

Pestalozzistrasse 16 3400 Burgdorf Switzerland info@reseatech.ch +41 (0)34 511 26 71


S_SetFluidCal a	Write new fluid calibration
b	data
	a=fluid density [mPas]
	b=fluid viscosity [kg/m3]
S_GetFlowCorr	Load current correction
	factor
S SetFlowCorr a	Set correction factor
_	a = Multiplier for flow rate
	value
S_GetInterval	Read current interval
S_SetInterval n	Setting the readout
	interval for continuous
	output in ms: 10 – 100000
	ms -> 100 – 0.01 Hz
	Only adjustable in 10 ms
	steps!
S_GetSerial	Read serial Number
S_SetThreshold	Set minimum flow rate
	[ul/s]
S_GetThreshold	Read minimum flow rate
	setting [ul/s]
Everything else	Wrong command
	,

Dosing pulse measurement

To capture a short event, such as a short valve dosing pulse, it is recommended to set the shortest interval time for maximal visibility of what is going on.

Setup Command: **S_SetInterval 10**

The following measurement shows a dosing pulse of 100 ms at 0.5 bar (absolute) pressure. The medium is water. The sensor reports the flowrate every 10 ms. By integrating the flowrate over time, you get the total volume of $15.16 \, \mu l$.

Technical data

Ordering Nr.	CFS-B1/B2	
Connectors	1/4-28 UNF flat	
	bottom	
Materials in	PEEK, FPM, silicone	
contact with	stainless steel	
media		
Dimensions	40x22x18 mm	
Weight	15 g	
Supply voltage	5 VDC	
Supply current	< 20 mA	
Accuracy of	± 2 % full scale	
volume flow		
Com-interface	RS-232	
Conformity	C E Rohs	